IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 80538064

Dynamic response of a poroelastic half space to horizontal
buried loading

Bo Jin ®*, Hua Liu ®

& Institute of Structure Theory, Tongji University, Shanghai 200092, People’s Republic of China
® College of Mechanical Engineering, Tongji University, Shanghai 200092, People’s Republic of China

Received 27 March 2000; in revised form 15 November 2000

Abstract

This investigation is concerned with the motion of a three-dimensional poroelastic half space produced by a hori-
zontal buried loading. The Green’s function for a horizontal point force buried in a poroelastic half space is given as a
superposition of the singular solution for the whole space plus a contribution representing relevant effects due to the
presence of the free surface. The mathematical approach is based on integral transform techniques. The pressure-solid
displacement form of the harmonic equations of motion for a poroelastic solid are developed from the form of the
equations originally presented by Biot. The singular solution of point force for the whole space is obtained from
thermoelasticity theory according to the analogy between the coupled, dynamic thermoelasticity and the dynamic
poroelasticity in the frequency domain. The asymmetric surface contributions in the transformed domain is derived by
using the integral transform techniques. The numerical results for a horizontal point loading applied at a finite depth
below the surface are presented. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of wave propagation in a poroelastic medium is of fundamental importance to several dis-
ciplines such as geotechnical engineering, seismology, geophysics and biomechanics. The first theory of
propagation of elastic waves in a fluid-saturated porous medium was established by Biot (1956). Biot (1962)
also extended his theory to the cases of anisotropic and viscoelastic media. The Green’s functions for
poroelastic full plane (or full space) were presented by Bonnet (1987), Manolis and Beskos (1989),
Dominguez (1991) and Cheng et al. (1991). Two-dimensional dynamic Green’s functions of homogeneous
poroelastic half-plane were derived by Senjuntichai and Rajapakse (1994). The responses of poroelastic half
space due to vertical loadings acting on the surface and at a finite depth below the surface were considered
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by Halpern and Christiano (1986a) and Philippacopoulos (1988, 1997). The interaction of a loaded plate
with a saturated, and layered saturated poroelastic half space have been studied by Halplern and Christiano
(1986b), Philippacopoulos (1989), Bougacha et al. (1993), Rajapakse and Senjuntichai (1995), Jin (1999)
and Jin and Liu (1999). Dynamic axial load transfer from elastic bar to poroelastic medium has also been
discussed (Zeng and Rajapakse, 1999). A comprehensive review on the dynamic analysis of poroelastic
media with boundary element methods has been presented by Beskos (1997). It is worth mentioning that,
although many problems involving dynamic response of poroelastic medium have been studied, the dy-
namic responses of a three-dimensional poroelastic half space to lateral buried dynamic excitations are not
reported in the literature. Solutions for internal, lateral excitations can be used in the study of dynamic
response of embedded foundations under lateral loading.

The main objective of this paper is to present a solution corresponding to lateral dynamic loading ap-
plied at a finite depth below the surface of a poroelastic half space. It was demonstrated by Bonnet (1987)
and Cheng et al. (1991) that there exists a complete analogy between the coupled, dynamic thermoelasticity
and the dynamic poroelasticity in the frequency domain. By eliminating the fluid displacement relative to
matrix Bonnet reduced Biot’s wave equations to the partial differential equations expressed in terms of the
displacements of the solid matrix and the pore-fluid pressure. Bonnet (1987) and Cheng et al. (1991) ob-
tained poroelastic Green’s functions for a full plane and a full space from the solutions given by Kupradze
et al. (1979) and Nowacki (1975), respectively, for thermoelasticity. However solutions involving poro-
elastic half plane (or half space) cannot be derived by using analogy between the thermoelasticity and the
poroelasticity since the thermoelastic solution for a loaded half space are not available in the literature. In
this paper a general solution involving poroelastic half space for the asymmetric problem is obtained by the
method of integral transform, which are presented in Section 4. By using the method of superposition
(Philippacopoulos, 1997), the required result can be derived, the details of which are furnished in Section 5.
In Section 6, illustrative numerical results are presented.

2. Governing equations

At this stage, it is convenient to non-dimensionalize all quantities with respect to length and stress by
selecting a length of reference « as a unit of length and the shear modulus of half space as a unit of stress.
Making use of the method proposed by Bonnet (1987) we can reduce Biot’s wave equations to the following
dimensionless equations:

i+ (X + Dy + ag(1 — p*u; — (. — O)p; + F =0 (1)
* 2 * 2
P % prago—v)
pyll—’_M*ﬂp—’_ 9 e=0 (2)

in which F; = 61;0(x1)0(x2)d(x3 — #) where & is the depth of the horizontal buried load; e = u;; is solid strain
and u; (i =1,2,3) are the dimensionless solid displacements; p is the dimensionless pore-fluid pressure; o,
M*=M/u, 25 =A/u, p* = p;/p, m* =m/p and b* = ab/(pp)"* are the dimensionless material parameters,
where 1 and u are Lame constants; o and M are Biot’s parameters accounting for compressibility of the
two-phased material; p and p; are mass densities of the bulk material and the pore fluid, respectively; m is a
density-like parameter that depends on p; and the geometry of the pores; b is a parameter accounting for
the internal friction due to the relative motion between the solid matrix and the pore fluid. The parameter b
is equal to the ratio between the fluid viscosity and the intrinsic permeability of the medium. If internal
friction is neglected then b = 0. ¥ = p*a}/(m*a} — ib*ay) is a dimensionless parameter. ay = wa(p/ ,u)l/ “isa
dimensionless frequency where o is the frequency of the motion. For brevity, the time factor of ¢ where ¢
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is a dimensionless time has been omitted from Egs. (1) and (2) and also from the sequel. Green’s function of
a poroelastic half space due to a buried horizontal point force can be obtain by using the method of su-
perposition. The problem is the superposition of the following two problems.

3. The solution of full space due to horizontal point force

According to Cheng et al. (1991), the solution of a poroelastic full space due to horizontal point applied
at (0,0, /) can be expressed in cylindrical coordinates (r, 0, z) as follows:

cosf 62 efiLlR e*iLzR efiSR ze,iSR
ur_4ﬂ/sz2{W<_5‘ R S )+S R } (3)
—sinf [ © e iLIR eiLaR  oiSR e iR
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It is convenient to consider the displacements, stresses and pore-fluid pressure that can be expressed as
follows:

u.(r,0,z) up (r,2)
u,(r,0,z) u (r,z)
T.(r,0,2) » =< 1.1(r,z) pcoso, { t (7, % 2) } = { tp (1 2) }sin@ (15)
o.(r,0,) 04 (r,2) w02 J - Lt (n2)
p(r,0,z) pi(r,2)
Defining
Uy =uq +up, Vi=uq—up, Xi=7%a—T0, Y1 =T+ 7T (16)
and considering the Sommerfeld integral
efisz 00 ef*,'x\th\
= [ e (1)

where

P= &K (18)

and the following identity

R

(d .14 )Jo@r) — 38 (&) (19)

the displacements, stresses and pore pressure for full space in the transformed domain can be obtained,
which are given by Egs. (A.1)-(A.10) in Appendix A.

4. The solution of half space due to surface loadings

The homogeneous solution of Egs. (1) and (2) in the transformed domain for asymmetric problem can be
obtained by using the method of integral transform. Putting F; = 0 in Eq. (1), and after some manipulations
we obtain the transformed solutions for half space as follows:

Vi(é,2) = —CayA1e7" — EayBie " + Dye 7 (21)
(¢, z) = yaidie " + parBie " + Cre (22)
D1(&,z) =A41e77F + Bie ¥ (23)

Making use of the transformed form of the constitutive relations, we obtain:

X1(&,2) =28y a14177 4+ 28p,a0Bie 7 + (C1 & — y3Dy)e ¥ (24)
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Y 2" mz 2 —VrZz 2 —V3Z
ie) = =2 + e 22 (e - | (£432) 6Dl e (25)
G.1(&,2) = gsdie " + gaBre 7 — 2y;Ce ¥ (26)
where
IM*L? — p*a}
Y CE TV EA .
Ayt s—atd
ai:w’ l:172 (28)
a=n+07+ Hai, g =1+ (v3 + &as (29)
= — 2“/%01 -0, ga=Ap— 2V§a2 - (30)

Next, functions 4;(&), B (&), C (&) and D, (&) are determined for four surface conditions. Solving Egs.
(23)(26) yields:

41(¢) i S fis fua] [ X1(£,0)
Bi(&) \ _ |/ S S fu|) Yi(£0) (31)
Ci(¢) S S fin | ] 64(,0)
Di(8) fu S fi ful \ Pi(E0)

where fj; (i =1,4, j=1,4) are given by Eqgs. (A.11)~(A.22) in Appendix A.

5. Using the method of superposition to obtain the solution of a poroelastic half space due to a buried horizontal
point force

The solution of a poroelastic half space due to a buried horizontal point force can be now obtained as
follows: setting z = 0 in Egs. (A.4), (A.8)-(A.10), take opposite signs of the result and substitute it into Eq.
(31), then substituting the resulting four sets 4,(¢), By (&), C1(¢) and D, (&) into Eqgs. (20)—(23). Using the
superposition principle we obtain the displacements and pore pressure in the transformed domain, then
taking inverse Hankel transforms the explicit solutions can expressed as follows:

nira) =3 | [T Oeana [T aeanee (32)
w(rz) = [ | vcan@na:- [ ane dé] (33)
walrz) = [ e (&2 (e g (34)
pira) = [ e (35)

where U, (&,z), V1(¢,2), (¢, z) and p, (¢, z) are given by Egs. (A.23)-(A.26) in Appendix A.
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The method of superposition, which uses the fundamental solution of full space with superposition to
derive half space solutions, requires the evaluation of fewer integration constants. To quantify this dif-
ference, recall that for wave propagation problems in poroelastic media, the number of integration con-
stants increases from the elastic case, since, in a source-free infinite poroelastic space, the propagation
involves three waves rather than two. Therefore, following the approach proposed by Pak (1987), which
treats half space as a two-domain problem, the solution of a 12 x 12 system is required to compute the
response of the poroelastic half space, in contrast to the method of superposition, which requires the so-
lution of a four by four system. However, an important advantage of the approach which treats half space
as a two-domain problem is that it does not require prior knowledge of the corresponding Green’s function
for the full space.

6. Numerical results

The solutions for displacements and pore pressure are given by Egs. (32)—(35). It is found from Egs.
(A.23)—-(A.26) in Appendix A that ecach integrand in Eqgs. (32)—(35) consists of 12 terms: the first three
represent source terms and the remaining nine represent surface terms. Since source terms can be evaluated
in closed forms (Egs. (A.1)-(A.4)), all that is required is evaluation of the integral representation of surface
terms. However, the integral representation of surface contribution cannot be evaluated analytically. In
view of the complexity of the integrands, it is natural to employ a suitable numerical quadrature scheme to
evaluate the integrals. The singularities of the integrands need to be investigated before the establishment of
a numerical integration procedure. The important singularities of the integrands are the branch points of
the radicals y, (i = 1,2,3) as defined by Eqgs. (A.5) and (A.6) and poles of the function 4 defined in Eq.
(A.22). The branch points are given by L;, L,, and S, while poles are given by the roots of the following
equation:

A=+ ) g —g) — 2131181 — 1222) =0

which is the Rayleigh equation for a poroelastic half space governing the propagation of the surface waves.
It is noted that the surface wave for a poroelastic medium is dispersive and dissipative if internal friction
exists (i.e. b # 0). Generally, these branch points and poles are all complex valued. However, their locations
can be on the real axis if the viscous coupling between the solid matrix and the pore fluid is neglected
(b =0). In this paper, the dissipative nature of the half space is incorporated (i.e. b # 0) therefore the real
&-axis is free from any singularities.

Since the Re(¢)-axis is free from singularities, subsequent numerical applications will be based on in-
tegration along this axis. The numerical solutions can be computed by using direct numerical quadrature
scheme such as the extended trapezoidal rule or Guass quadrature. In this paper, the numerical solutions
are obtained by using the extended trapezoidal formula with a sampling interval of AE. It is noted that when
the path of integration is in the neighborhood of the pole, the integrand become nearly singular and a very
small integration interval has to be employed. Therefore, A¢ = 0.002 for | — Re(&g)| < 0.2 where & is the
pole given by the Rayleigh equation for a poroelastic half space and A¢ = 0.05 where ¢ is outside that
region.

In the numerical study the displacements and pore pressure of poroelastic half space due to horizontal
buried unit point force applied at (0, 0, 2= 1) and in the 0 = 0 direction are considered. The dimen-
sionless parameters of the poroelastic materials are: " = 1.5, p* = 0.53, m* = 1.1, M* =5, « = 0.95. In
addition, b* = 0.5, 5 and 50. The larger the permeability, the smaller the b* is. In the figures asterisk, open
circle and filled circle represent b* = 0.5, 5 and 50.
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Figs. 1 and 2 show the radial displacement u, (r = 1,0 = 0,z) varying with z for three different poro-
elastic materials. Solutions are presented for two different frequencies (ap = 1 and 3). It is evident from
these solutions that the response of the half space depends very significantly on the frequency of the ex-
citation of the loading. Both real and imaginary parts of the displacements shown in Figs. 1 and 2 vary
rapidly with the distance and become more oscillatory as the frequency of excitation increases. Comparison
of solutions presented in Figs. 1 and 2 also indicate that the poroelastic properties of the medium (b*) has a
significant influence on the response.

Figs. 3 and 4 show the vertical displacement u.(1,0,z) varying with z due to horizontal buried point
force. Solutions are given for two frequencies of excitations. It is noted that the vertical displacement is
much less than the radial displacement observed earlier in Figs. 1 and 2. Figs. 3 and 4 indicate that at low

Re[41tua2u,.] Im[4nua2u,]
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Fig. 1. Radial displacement u,(1,0,z) for the case of h =1 at ag = 1.
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Fig. 2. Radial displacement u,(1,0,z) for the case of # =1 at ay = 3.
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Fig. 3. Vertical displacement u.(1,0,z) for the case of h =1 at ap = 1.
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frequencies (ap = 1) the displacements vary rapidly with the depth whereas at high frequencies (¢ = 3) the
variations become more oscillatory. In general, the influence of poroelastic properties of the medium on the
solutions shown in Figs. 3 and 4 is similar to that observed earlier for the radial displacement ,(1,0,z). It is
also found that the real part of the vertical displacement is larger at low frequencies than that at high
frequencies.

Figs. 5 and 6 show the profiles of pore pressure due to horizontal buried point force for three different
poroelastic materials. The pore pressure p(1,0,z), depends significantly on the frequency and poroelastic
material properties. The pore pressure is larger at high frequencies than that at low frequencies. The
magnitude of pore pressure is found to increase with increasing »*, which is consistent with the fact that a
higher »* means a more impermeable medium.
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Fig. 4. Vertical displacement u.(1,0,z) for the case of A =1 at ay = 3.
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Fig. 5. Pore pressure p(1,0,z) for the case of h =1 at ap = 1.
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Fig. 6. Pore pressure p(1,0,z) for the case of h =1 at ag = 3.
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7. Conclusions

In this paper, the response of a three-dimensional poroelastic half space under the action of a time-
harmonic, horizontal, buried source is derived analytically by the method of superposition. The solution is
given as a superposition of infinite space Green’s functions and surface contributions. The surface con-
tributions in the transformed domain for asymmetric conditions is obtained by the method of integral
transform. Numerical results presented in the paper indicated that the permeability of poroelastic medium
has important influences on the horizontal dynamic responses of a poroelastic half space. Numerical results
also show a strong dependence of dynamic response on the frequency of excitation. The solution presented
here can be used to study the dynamic response of foundation in a poroelastic half space under lateral
loading. With the aid of Fourier or Laplace transforms, the method can be naturally extended to the
treatment of transient problems.
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Appendix A

The displacements and pore pressure for full space in the transformed domain are given by

o 1 _51526*71\2*’7\ 52526*7’2\2*}!\ é e 73lz=Hl
U = A.l
! 4dmua’S? < 71 + Y2 N V3 (&1

B 1 5. Erenl—hl 5, E2a=nl—h] e il D §2erslz—hl

Pio = g - 2 ST ) (A2)
4nua*S 71 Y2 73 V3
Sgn(h - Z) —y1|z—h —72|z—h| 2 —73|z—h|

Usloo = W (5156 yilz—h] _ SyCe 2 — e ) (A.3)

5 —Eenl=—h e~ 2lz=Al

B = (== 46 (A4)

4rua? 71 Y2
where

y =G -1 i=12 (A.5)
73 = /52 V) (A.6)

+1, h>z
sgn(h —z) = { 1 hes (A7)
Note that the radicals y; (i = 1,2,3) are selected such that Re(y,) = 0. Stresses can be expressed as:
X = sgn(h —z) (01826 Nl — 5,2 nliHl _ 2ol (A.8)

2nua*S?



8062

JZ o0 =
! 4npaS?

7 = sgn(h —z)

Bo Jin, H. Liu | International Journal of Solids and Structures 38 (2001) 8053-8064
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The functions f;; (i = 1,4, j=1,4) are defined as follows:
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(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

The transformed displacements and pore pressure for half space due to horizontal buried point force are
expressed as follows:
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